8,720 research outputs found

    Re-analysis of the nucleon space- and time-like electromagnetic form factors in a two-component model

    Full text link
    Recent experimental data on space-like and time-like form factors of the nucleon are analyzed in terms of a two-component model with a quark-like intrinsic three-quark structure and quark-antiquark pairs.Comment: 9 pages, 5 figures, accepted for publication as a Brief Report in Physical Review

    Preasymptotic multiscaling in the phase-ordering dynamics of the kinetic Ising model

    Full text link
    The evolution of the structure factor is studied during the phase-ordering dynamics of the kinetic Ising model with conserved order parameter. A preasymptotic multiscaling regime is found as in the solution of the Cahn-Hilliard-Cook equation, revealing that the late stage of phase-ordering is always approached through a crossover from multiscaling to standard scaling, independently from the nature of the microscopic dynamics.Comment: 11 pages, 3 figures, to be published in Europhys. Let

    Critical Exponents of the KPZ Equation via Multi-Surface Coding Numerical Simulations

    Full text link
    We study the KPZ equation (in D = 2, 3 and 4 spatial dimensions) by using a RSOS discretization of the surface. We measure the critical exponents very precisely, and we show that the rational guess is not appropriate, and that 4D is not the upper critical dimension. We are also able to determine very precisely the exponent of the sub-leading scaling corrections, that turns out to be close to 1 in all cases. We introduce and use a {\em multi-surface coding} technique, that allow a gain of order 30 over usual numerical simulations.Comment: 10 pages, 8 eps figures (2 figures added). Published versio

    Ultrahigh dielectric constant of thin films obtained by electrostatic force microscopy and artificial neural networks

    Full text link
    Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A detailed analysis of the electrostatic interaction between an electrostatic force microscope tip and a thin film is presented. By using artificial neural networks, an equivalent semiinfinite sample has been described as an excellent approximation to characterize the whole thin film sample. A useful analytical expression has been also developed. In the case of very small thin film thicknesses (around 1 nm), the electric response of the material differs even for very high dielectric constants. This effect can be very important for thin materials where the finite size effect can be described by an ultrahigh thin filmdielectric constant.This work was supported by TIN2010-196079. G.M.S. acknowledges support from the Spanish Ramón y Cajal Program

    The non-linear q-voter model

    Get PDF
    We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unanimous opinion, still a voter can flip its state with probability ϵ\epsilon. We solve the model on a fully connected network (i.e. in mean-field) and compute the exit probability as well as the average time to reach consensus. We analyze the results in the perspective of a recently proposed Langevin equation aimed at describing generic phase transitions in systems with two (Z2Z_2 symmetric) absorbing states. We find that in mean-field the q-voter model exhibits a disordered phase for high ϵ\epsilon and an ordered one for low ϵ\epsilon with three possible ways to go from one to the other: (i) a unique (generalized voter-like) transition, (ii) a series of two consecutive Ising-like and directed percolation transition, and (iii) a series of two transitions, including an intermediate regime in which the final state depends on initial conditions. This third (so far unexplored) scenario, in which a new type of ordering dynamics emerges, is rationalized and found to be specific of mean-field, i.e. fluctuations are explicitly shown to wash it out in spatially extended systems.Comment: 9 pages, 7 figure

    Constraining the Warm Dark Matter Particle Mass through Ultra-Deep UV Luminosity Functions at z=2

    Get PDF
    We compute the mass function of galactic dark matter halos for different values of the Warm Dark Matter (WDM) particle mass m_X and compare it with the abundance of ultra-faint galaxies derived from the deepest UV luminosity function available so far at redshift z~2. The magnitude limit M_UV=-13 reached by such observations allows us to probe the WDM mass functions down to scales close to or smaller than the half-mass mode mass scale ~10^9 M_sun. This allowed for an efficient discrimination among predictions for different m_X which turn out to be independent of the star formation efficiency adopted to associate the observed UV luminosities of galaxies to the corresponding dark matter masses. Adopting a conservative approach to take into account the existing theoretical uncertainties in the galaxy halo mass function, we derive a robust limit m_X>1.8 keV for the mass of thermal relic WDM particles when comparing with the measured abundance of the faintest galaxies, while m_X>1.5 keV is obtained when we compare with the Schechter fit to the observed luminosity function. The corresponding lower limit for sterile neutrinos depends on the modeling of the production mechanism; for instance m_sterile > 4 keV holds for the Shi-Fuller mechanism. We discuss the impact of observational uncertainties on the above bound on m_X. As a baseline for comparison with forthcoming observations from the HST Frontier Field, we provide predictions for the abundance of faint galaxies with M_UV=-13 for different values of m_X and of the star formation efficiency, valid up to z~4.Comment: 14 pages, 3 figures. Accepted for publication in The Astrophysical Journa
    • …
    corecore